1. (i) bond breaking is endothermic/ energy has to be put in to break a bond (1)

1

3

(ii) bonds broken: 3(C-H) + (C-O) + (O-H) + 1.5 (O=O) = 2781 kJ (1)bonds made: 2(C=O) + 4(O-H) = 3470 kJ (1) $\Delta H_c = -689 \text{ (kJ mol}^{-1} \text{) (1)}$

[4]

- 2. (a) (i) (heat/energy change) when 1 mole of substance is formed (1) from its elements (1)
- 2
- (ii) 1 atm/101 kPa and a stated temperature/25 °C/298 K (1)
- 1

(iii) $C(s) + \frac{1}{2} O_2(g) \rightarrow CO(g)$ balanced equation forming 1 mol CO (1) state symbols (1) 2

(iv) cycle drawn/sum of ΔH (products) – ΔH (products) (1) -75 - 242 + x = -110 (1) $\Delta H = (+)207 \text{ kJ mol}^{-1}$ (1)

3

(b) production of margarine/ammonia/Haber process (1)

[9]

3. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

formulae ✓ balancing ✓

ignore state symbols

[2]

4. (enthalpy/ energy/ heat change) when 1 mole of substance/ element/ compound ✓ (NOT absorbed) is completely burnt/ burnt in excess oxygen ✓ under standard conditions (if conditions stated they must be correct) ✓

[3]

5. (enthalpy change) when 1 mole of compound is formed ✓ (i) from the constituent elements 🗸 2 (ii) $6C(s) + 7H_2(g) \rightarrow C_6H_{14}(l)$ correct formulae and balancing ✓ tate symbols 🗸 2 temperature 25°C/298K/ a stated temperature (if justified) pressure 1 atm/ 100 kPa/ 101 kPa ✓ 1 [5] 6. diagram to show lines to show energy level at start above that at end of reaction \checkmark ΔH labelled between reactants and products \checkmark $E_{\rm a}$ labelled from reactants to top of energy 'hump' \checkmark [3] 7. correct Hess' cycle ✓ x - 890 = -572 - 394 $x = -76 \text{ (kJ mol}^{-1}) \checkmark$ [3] $1652/4 = 413 \text{ (kJ mol}^{-1}) \checkmark$ 8. 1 $(C \Box C) + 6 (C \Box H) = 2825 \checkmark$ (ii) $(C \square C) = 2825 - 6(413) = 347 \text{ (kJ mol}^{-1}) \checkmark$ 2 [3] 9. (a reaction) that releases energy/ (a reaction) that releases heat/ a reaction with a (a) negative $\Delta H(1)$ 1 diagram to show (b) (i) upward **hump** (1) $CO_2 + (2)H_2O$ / carbon dioxide and water below reactants (1) 2 E_a marked (1) (ii) if an arrowhead is included, it must be upwards 1 [4]

[8]

[8]

- 10. (a) (heat/ energy change) when 1 mole of substance is formed (1) from its elements (1)
 - (b) $C(s) + 2H_2(g) \rightarrow CH_4(g)$ balanced equation (1) state symbols (1) 2
 - (c) cycle drawn/ sum of enthalpy changes products sum of enthalpy changes reactants (1) -75 242 + x = -110 (1) 3 $\Delta H = 207$ (kJ mol⁻¹) (1)
 - (d) any industrial use, examples include
 manufacture of ammonia/ for Haber process
 manufacture of margarine/ hydrogenation of alkenes
- 11. (i) to break a bond energy has to be put in/ ✓breaking bonds is endothermic1
 - (ii) energy needed to break 1 mole **of bonds** ✓
 in the **substance** in the gaseous state ✓
 2
 - (iii) bonds broken: $3(C-H) + (C-O) + (O-H) + 1\frac{1}{2}(O=O) = 2781 \text{ kJ} \checkmark$ bonds made: $2(C=O) + 4(O-H) = 3470 \text{ kJ} \checkmark$ $\Delta H_c = -689 \checkmark (\text{kJ mol}^{-1})$
 - (iv) actual bond enthalpies may be different from average values ✓
 conditions are not standard / methanol/ water is a liquid under standard conditions ✓

[5]

12. (i) (enthalpy/ energy change) when 1 mole of substance/compound formed ✓ from its elements ✓ under standard conditions ✓ (if conditions quoted must be

correct – 25 C/298 K, 1 atm/100 kPa/101 kPa)

3

- (ii) $Mg(s) + N_2(g) + 3O_2(g) \checkmark Mg(NO_3)_2(s)$ balanced species \checkmark state symbols \checkmark 2
- (iii) cycle \checkmark $x - 791 = -602 - 2(33) \checkmark$ $x = 123 \checkmark$ 3
- 13. (i) reaction carried out at 298K and 1 atm pressure (or other relevant units) (1)
 - (ii) enthalpy change when 1 mole (1)

 (of substance) is burnt in excess oxygen (1)

 2
 - (iii) $4\text{CO}_2 + 5\text{H}_2\text{O}$ at lower energy than reagents (1) E_a marked correctly (1) AH marked correctly (1) 3
- 14. (i) $4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$ reagents and products (1) state symbols (1) 2
 - (ii) $4C + 5H_2 \xrightarrow{X} C_4H_{10}$ 4(-394) 5(-286) -2877 $4CO_2 5H_2O$ cycle (1) correct values (1) answer (1) X - 2877 = 4(-394) + 5(-286) $X = -129 \text{ (kJ mol}^{-1})$

15. (a) (i) bonds broken

$$(N - N) + (O == O) + (N - H) = 163 + 497 + 4(390) = 2220 \text{ (kJ mol}^{-1}) (1)$$

bonds made

$$(N \equiv N) + 4(OH) = 945 + 4(463) = 2797 (KJ mo l^{-1}) (1)$$

broken ΔH is +ve and made ΔH is -ve (1)

enthalpy of reaction =
$$577 (KJ mo \tilde{l}^{1})$$
 (1)

(ii)
$$\frac{577}{32} = 18.0(KJ)(1)$$

(b) N-N bond is weak/ higher Ea for ammonia/ rate too slow for ammonia/ too much energy to break bonds in ammonia / hydrazine is liquid/ do not need pressurised containers/ more moles/ lots of gas produced by hydrazine/ more energy per mole produced by hydrazine (1)

[6]

1

2

2

- 16. (a) (enthalpy change) when 1 mole of substance/ element/ compound (1)NOT energy neededis completely burnt (1)
 - (b) C₃H₇OH(l) + 4½ O₂(g) → 3CO₂(g) + 4H₂O(I)
 correctly balanced equation (1)
 state symbols (species must be correct) (1)

[2]

(c) $\Box \mathbf{H} = \mathbf{mc} \Box \mathbf{T} \ (1)$ (i) \Box H = 50 × 4.18 × 12.8 = 2675 (J) = 2.68 (kJ) (1) 2 ignore sign (ii) Mr propan-1-ol = 60 (1)number moles = 0.00167(1)2 $\Box H = (1608(KJ \, mo \, \tilde{l}^{\, 1}) \, (1)$ (iii) 1 (iv) heat losses (1) thermal capacity of beaker ignored (1) conditions were non-standard (1) combustion could be incomplete (1) propan-1-ol evaporates (1) 2 water evaporates (1) [11] **17.** the enthalpy change when 1 mole of compound/species/substance is formed \checkmark (i) [mention of 1 mole of *elements* negates this mark] from its elements [NOT atoms/ions] (under standard conditions) 🗸 2 25°C/298K and 1 atmos/1 × 10^5 Pa \checkmark (ii) 1 [3] $Pb(s) + \frac{1}{2} O_2(g) \rightarrow PbO(s)$ (balancing for 1 mol of PbO) 18.

√u/c

(state symbols)

19. (i) $\Delta H_{f}^{\Theta} = -718 - 3(-217)$

(correct signs ✓)

(correct calculation of value \checkmark) 3

some possible ecf values: +67

-501

+501

-1369 2

+1369

(ii) $\Delta H_{f}^{\Theta} = -718 + 10 + 2(217)$

(correct signs ✓)

(correct calculation of value \checkmark) 3

some possible ecf values: -57 [2]

–284 [2] **–294** [2]

+424 [1] +444 [2] -491 [2]

-511 [1] -708 [1] -1142 [2]

for others, work through the calc: -[1] for each error.

ers, work through the calc. –[1] for each erfor.

[6]

20. I-I(g)
$$\rightarrow$$
 2I(g) (state symbols \checkmark) (1 mole $I_2 \checkmark$)

[2]

21. No mark scheme available

22. No mark scheme available

23. No mark scheme available